_ _    _ _____  ___   __                       
 __      _(_) | _(_)___ / ( _ ) / /_   ___ ___  _ __ ___  
 \ \ /\ / / | |/ / | |_ \ / _ \| '_ \ / __/ _ \| '_ ` _ \ 
  \ V  V /| |   <| |___) | (_) | (_) | (_| (_) | | | | | |
   \_/\_/ |_|_|\_\_|____/ \___/ \___(_)___\___/|_| |_| |_|

Pozitron

A mai világban a Pozitron a társadalom széles köre számára nagyon fontos és érdekes téma lett. A technológia fejlődésével és a globalizációval a Pozitron egyre fontosabbá vált mindennapi életünkben. A gazdaságra gyakorolt ​​hatásától a kultúrára és politikára gyakorolt ​​hatásáig a Pozitron a különböző területeken visszatérő vitatéma lett. Ebben a cikkben megvizsgáljuk a Pozitron különböző dimenzióit és jelentését, valamint a mindennapi életünkre gyakorolt ​​hatását és a mai világban betöltött jelentőségét.
Pozitron
Anderson ködkamrafelvétele a pozitron nyomáról. 6 mm-es ólomlemez választja el a kamrát, amelyen áthaladva az energiát veszít, lehetővé téve a mozgásirány meghatározását.
Anderson ködkamrafelvétele a pozitron nyomáról. 6 mm-es ólomlemez választja el a kamrát, amelyen áthaladva az energiát veszít, lehetővé téve a mozgásirány meghatározását.
Osztályozáslepton

A pozitron az elektron antirészecskéje. A legtöbb adata azonos vele, a töltés jellegűek ellentétesek (elektromos töltés, leptontöltés), ezeket lásd az elektronnál.

A kozmikus sugárzásban és atommagbomlásokban (inverz-béta-bomlás) keletkezik.

Nagy energiájú gamma-sugárzás létrehozhat elektron-pozitron párt atommag jelenlétében, ha energiája nagyobb, mint az elektron nyugalmi energiájának duplája: 1,022 MeV (két részecske keletkezik). Ez a párkeltés.

A pozitron anyag jelenlétében hamarosan találkozik egy elektronnal, ilyenkor megsemmisül és nagy energiájú fotonokat kelt. Ez az annihiláció. Ezen alapszik a pozitronemissziós tomográf (PET).

A felfedezés története

Paul Dirac jósolta meg 1928-ban elméleti megfontolásokból (lásd antirészecske).

Carl David Anderson fedezte fel 1932-ben a kozmikus sugárzásban, melyet mágneses térben lévő ködkamrával vizsgált. A ködkamrafelvételeken nem tudható, hogy pozitron, vagy ellentétes irányban haladó elektron hagyta a nyomot. Anderson úgy tudta meg a mozgásirányt, hogy a ködkamrába akadályt tett, amin a pozitron áthaladva energiát veszített. A kijövő részecske pályája jobban görbül, mint az eredetié, így a haladási irány meghatározható. A mágneses tér és a görbület irányából a haladási irány ismeretében már meghatározható a töltés előjele.

Források

Kapcsolódó cikkek

További információk