_ _    _ _____  ___   __                       
 __      _(_) | _(_)___ / ( _ ) / /_   ___ ___  _ __ ___  
 \ \ /\ / / | |/ / | |_ \ / _ \| '_ \ / __/ _ \| '_ ` _ \ 
  \ V  V /| |   <| |___) | (_) | (_) | (_| (_) | | | | | |
   \_/\_/ |_|_|\_\_|____/ \___/ \___(_)___\___/|_| |_| |_|

Modulär aritmetik

Den här artikeln kommer att ta upp ämnet Modulär aritmetik, en fråga av stor relevans och intresse idag. Modulär aritmetik har fångat experternas och allmänhetens uppmärksamhet på grund av dess inverkan på olika samhällsområden. Utefter dessa linjer kommer olika aspekter relaterade till Modulär aritmetik att undersökas, från dess ursprung och utveckling, till dess implikationer i den samtida världen. Åsikter och ståndpunkter från specialister i frågan kommer också att analyseras, liksom möjliga lösningar eller åtgärder som ska vidtas i denna fråga. Utan tvekan är Modulär aritmetik ett ämne som inte lämnar någon oberörd, så det är viktigt att fördjupa sin studie och förståelse för att uppnå en mer komplett och klargörande vision.
Matematiska operationer
Addition (+)
term + term
addend + addend
= summa
Subtraktion (−)
term − term
minuend − subtrahend
= differens
Multiplikation (× eller ·)
faktor × faktor
multiplikator × multiplikand
= produkt
Division (÷ eller /)
täljare / nämnare
dividend / divisor
= kvot
Moduloräkning (mod)
dividend mod divisor = rest
Exponentiering (^)
basexponent = potens
n:te roten (√)
grad radikand = rot
Logaritm (log)
logbas(potens) = exponent

Modulär aritmetik, moduloräkning eller kongruensräkning är ett område inom aritmetiken, där man räknar med ett begränsat antal tal. Andra tal räknas som jämlika ("kongruenta") med ett av dessa, nämligen med det av talen som blir rest vid division med antalet tal man räknar med.

Den modulära aritmetiken används bland annat inom kryptologin.

I den modulära matematiken analyseras och används kongruensrelationen. Två tal a och b sägs vara kongruenta modulo n om n delar differensen mellan a och b, vilket för alla nollskilda n är ekvivalent med att de har samma principala rest vid division med n. Detta betecknas , och ibland även .

Talen a och b är kongruenta modulo 0 om och endast om a = b. Detta triviala slags kongruens bortser man ofta från, och förutsätter då i stället att n är nollskilt, alltså inte är lika med noll. Under det extraantagandet kan man formellt beskriva definitionen och dess grundläggande egenskaper så här:

har samma rest vid division med n .

Exempel

eftersom 9 och 5 båda ger resten 1 vid division med 4.

eftersom 10 och 0 ger samma rest (0) vid division med 2.

Generaliseringar

Om man låter beteckna delmängden av Z, så kan ovanstående definition formuleras . Den avgörande egenskapen hos är att den är ett ideal. Man låter ofta betyda där är ett ideal i en ring , eller allmännare Y är en delmodul av en modul X. Mängden av ekvivalensklasser till denna relation betecknas , och kallas en kvotring (respektive kvotmodul, kvotgrupp, kvotrum och så vidare).

Moduloräkning

Moduloräkning (även kallat kongruensräkning) är ett område inom elementär algebra. Relationen kongruens modulo används bland annat för datoraritmetik och inom kryptering.

Två heltal a och b är kongruenta modulo n om de ger samma rest vid division med n (ett heltal som är större än eller lika med 2).

Detta betecknas . Man kan också skriva .

Om a och b inte är kongruenta modulo n, säger vi att talen är inkongruenta, vilket betecknas

Exempel

  • , Resten kan i båda fallen bli 4 vid division med 5
  • , Resten kan i båda fallen bli 3 vid division med 7
  • , Resten blir olika vid division med 6

De fyra räknesätten

Vid moduloräkning fungerar addition, subtraktion och multiplikation som vanligt. Division fungerar emellertid bara med vissa förbehåll, se exempel nedan.

Bevis

Låt n vara ett positivt heltal. Antag att heltalen samt uppfyller
och
Per definition vet vi att och
Det betyder att det finns heltal x och y sådana att
och
Nu följer
Alltså gäller , vilket betyder att

Beviset ovan bekräftar giltigheten för addition, och därmed även för subtraktion.

Vidare,
(se ovan under additionsbeviset)
Och därmed
Det vill säga

Detta bevisar giltigheten för multiplikation vid moduloräkning.

Exempel

Addition

Om vi ersätter talen ovan med andra tal som är kongruenta med de första så får vi samma svar

Subtraktion

Om vi ersätter talen ovan med andra tal som är kongruenta med de första så får vi samma svar

Multiplikation

Om vi ersätter talen ovan med andra tal som är kongruenta med de första så får vi samma svar

Division

För division fordras viss försiktighet, vilket t.ex. illustreras av att , men ; det gäller emellertid att om är heltal, och , så där är den största gemensamma delaren till och . Speciellt gäller att om , så närhelst och är relativt prima (saknar gemensamma delare större än 1).

Se även

Referenser

Böcker

Externa länkar