_ _    _ _____  ___   __                       
 __      _(_) | _(_)___ / ( _ ) / /_   ___ ___  _ __ ___  
 \ \ /\ / / | |/ / | |_ \ / _ \| '_ \ / __/ _ \| '_ ` _ \ 
  \ V  V /| |   <| |___) | (_) | (_) | (_| (_) | | | | | |
   \_/\_/ |_|_|\_\_|____/ \___/ \___(_)___\___/|_| |_| |_|

Värmeledningsförmåga

I den moderna världen har Värmeledningsförmåga blivit ett ämne av stor relevans och intresse för många samhällssektorer. Dess inflytande sträcker sig från den personliga till den professionella sfären, inklusive den inverkan den har på kultur och teknik. Det finns många debatter och reflektioner som kretsar kring Värmeledningsförmåga, och dess betydelse är obestridlig idag. Det är därför det är viktigt att fördjupa sig i dess olika aspekter och förstå dess omfattning och konsekvenser i vårt dagliga liv. I den här artikeln kommer vi att utforska några av de mest relevanta perspektiven på Värmeledningsförmåga och hur det påverkar samhället i stort.
Värmeledningsförmåga
Conduction chaleur barreau regime stationnaire.svg
Värmeflödet från den varma till den kalla sidan.
Grundläggande
AlternativnamnSpecifik värmeledningsförmåga
DefinitionEgenskapen hos ett material att leda värme
Storhetssymbol(er)
Enheter
SI-enhetW/(m · K)
= kg · m · s−3 · K−1
SI-dimensionM·L·T−3·Θ−1
Angloamerikansk enhetBtu/(s · ft · °R)
≈ 6 230,64 W/(m · K)

Värmeledningsförmåga (även termisk konduktivitet, värmekonduktivitet eller specifik värmeledningsförmåga) är egenskapen hos ett material att leda värme.

Enligt Fouriers lag är värmeflödet J (mängden värmeenergi som passerar på en tidsenhet) genom en stav eller en plåt proportionellt mot tvärsnittsarea S och mot temperaturskillnaden mellan den kalla och den varma sidan ΔT och omvänt proportionellt mot stavens längd (eller plåtens tjocklek) Δx:

.

I denna formel är värmeledningsförmågan. Den mäts i SI-enheten W·m-1·K-1 (watt per meter och kelvin).

I metaller beskriver Wiedemann-Franz-lagen proportionaliteten mellan värmeledningsförmåga och elektrisk ledningsförmåga. De flesta elektriska isolatorer är också värmeisolerande. Det finns dock undantag, såsom diamant som har hög värmeledningsförmåga, mellan 1000 och 2600 W·m-1·K-1 (högre än koppar). Aluminiumoxid (safir) är ett annat exempel på ett hårt, isolerande, material med hög ledningsförmåga.

Värmeledningsförmåga hos några vanliga ämnen
Ämne Värmeledningsförmåga
W·m-1·K-1
Silver 427
Koppar 398
Guld 315
Aluminium 238
Mässing 111
Järn 80
Platina 70
Invar 16
Vismut 8,5
Betong 1,7
Glas 1
Vatten 0,6
Ull 0,050
Cellplast 0,037
Luft 0,026

Värmeledningsförmågan ändras med temperaturen. För de flesta ämnen minskar den något med stigande temperatur. Kan även bero på trycket (vid låga tryck).

Värmekonduktivitet i byggsektorn

För byggnadsmaterial anges isoleringsförmågan som värmekonduktivitet. I detta sammanhang betecknas storheten med λ och kallas därför ofta lambdavärde. Om till exempel cellplastisolering eller mineralull har lambdavärdet 37 motsvarar detta 0,037 Watt i värmeförlust per kvadratmeter om isoleringen är 1 meter tjock och det är en grads skillnad inne och ute. För en 10 cm tjock väggisolering och med 20 graders temperaturskillnad blir värmeförlusten 200 gånger större, alltså 7,4 Watt per kvadratmeter.

Källor

Se även

Externa länkar